itk A R ) Wi

LEHEE

TDA Progress Report 42-110

7773¢63-16430

JoBY 58

Q,%

August 15, 1992

Binary Weight Distributions of Some
Reed-Solomon Codes

F. Pollara and S. Amold
Communications Systems Research Section

The binary weight distributions of the (7,5) and (15,9) Reed-Solomon (RS) codes
and their duals are computed using the MacWilliams identities. Several mappings
of symbols to bits are considered and those offering the largest binary minimum
distance are found. These results are then used to compute bounds on the soft-
decoding performance of these codes in the presence of additive Gaussian noise.
These bounds are useful for finding large binary block codes with good performance
and for verifying the performance obtained by specific soft-decoding algorithms

presently under development.

l. Introduction

Reed-Solomon (RS) codes are currently used in the
DSN as outer codes in a concatenated coding system. For
this application, they are decoded by algebraic techniques
using operations in the field over which the code is de-
signed. An (n,k) RS code C over GF(2™) has codewords
of length n = 2™ — 1 symbols, where each symbol is a
binary m-tuple. Let A; be the number of codewords of
weight i in C, then the vector (Ao, Ay,---, An) is called
the weight distribution of C, where the weight (Hamming
weight) of a codeword is the number of its nonzero coor-
dinates. The term “coordinate” assumes different mean-
ings depending on how one views the code: One may as-
sume that there are n coordinates, each having a value in
GF(2™), or one may consider the binary expansion of the
code, i.e., a binary (nm, km) code, where each coordinate
is a single bit. Hence, one may be interested in the symbol
weight distribution or in the binary weight distribution of a
(nonbinary) code. The latter depends on the specific sym-
bol to binary m-tuple mapping that was chosen. Which
of these distributions is of interest depends on which type
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of decoding algorithm one plans to use, since weight dis-
tributions are essential in evaluating the error-correcting
performance of a code. The symbol weight distribution of
RS codes is well known {1] and can be used to find the per-
formance of algebraic decoders working on symbols. The
full error-correcting power of a code is obtained when soft,
maximum-likelihood decoding is used, working directly
on unquantized vectors in the nm-dimensional Euclidean
space. Soft, maximum-likelihood decoding is superior to
its hard quantized version by more than 2 dB. Further-
more, the algebraic decoding techniques usually employed
for RS codes are not maximum-likelihood, but rather “in-
complete” decoding techniques with a nonzero probability
of decoding failure.

Il. Binary Weight Distribution

This article focuses on evaluating the soft, maximum-
Tikelihood decoding performance of RS codes, and there-
fore one needs to compute the binary weight enumerators
of these codes. Such a task is a long-standing open prob-



lem in coding theory due to its intrinsic complexity. How-
ever, approximate results have been found and results for
special classes of codes are known.

In general, one could think of using an exhaustive enu-
meration to find the numbers A; by considering each code-
word. Unfortunately, such a method is limited to fairly
short codes, even on the most powerful computers avail-

able.

It was possible, for example, to find by exhaustive enu-
meration the weight distribution of a (21,15) binary code
obtained from the (7,5) RS code over GF(27), but it was
impractical to find that of a (60,36) binary code obtained
from the (15,9) RS code over GF(2*), since it involves 236
codewords. Fortunately, a well-known result from coding
theory, the MacWilliams identities [2], can be used to re-
late the weight distribution of a code to that of its dual.
For example, one can find the binary weight distribution
of the (15,9) RS code from that of its (15,6) dual code, by
exhaustive enumeration on 224 codewords instead of 2%
codewords.

Let the weight enumerator of a code C be defined as
We(z,y) = Soio Aiz" 'y’ Then the weight enumera-
tor of the dual code Ct of a binary code C is given by
[MacWilliams identity over GF(2)]

1
Wes = gwc(ﬂc +y,z—-Yy)

The generator polynomial of an (n, k) RS code C may
be written as

n—k

9o(2) = [z - o™

i=1

where b can be chosen among the values 0,1,---,n — 1,
and a is a root of the primitive polynomial over GF(2)
defining the field GF(2™). The parity check polynomial
h(z) of the code C

H (z — o't?)

z® —1
h(z) = —— =
( ) g(z:) t=n—-k+1

is the generator of the dual code ct.

The binary weight distribution of the (21,15) binary
code derived from the (7,5) RS code is shown in Table 1

together with the distribution of the (21,6) dual code as-
sociated with the (7,2) RS code. Results are shown for
different values of the parameter b that correspond to dif-
ferent assignments of symbols to binary m-tuples. These
are only a small subset of all possible assignments. The
weight distributions shown in Table 1 could be found by
exhaustive enumeration. For the (7,2) RS code, the largest
binary minimum distance found was 8, which is the best
possible according to [4]. For the (7,5) RS code the best re-
sult was dnin = 4, which meets the Griesmer upper bound

3].

The weight distribution of the (60,36) binary code was
found by using the MacWilliams identity for binary codes,
by a procedure shown in Fig. 1. First, the (15,6) dual
code was generated by using the parity check polynomial
of the (15,9) code as its generator. Then, the (15,6) code
over GF(2%) was represented as a binary (60,24) code by
mapping symbols in GF(2%) to binary 4-tuples by using
the representation of field elements given by the irreducible
polynomial 1+« +z* over GF(2). The weight distribution
of the (60,24) code was found by exhaustive enumeration,
and finally, the weight distribution of the (60,36) code was
computed by the MacWilliams identity for binary codes.

The missing arrow in the block diagram of Fig. 1
stresses the fact that the resulting (60,36) code is not nec-
essarily related to its nonbinary parent, the (15,9) code, by
the same mapping relating the (15,6) code to the (60,24)
code. Table 2 shows the binary weight distributions for
some (60,24) codes derived from the (15,6) RS code, where
the largest minimum distance found was 13. Tt is known
[4] that at least one (60,24) code exists for some value of
dmin in the range 16 to 18. Table 3 shows similar results
for the (60,36) code, where the largest minimum distance
found was 8. At least one (60,36) code exists for some
value of dm;n in the range 9 to 12 [4].

lll. Performance Evaluation

The soft decoding performance of block codes can be
estimated by union bounding techniques. Specifically the
word error probability P, is upper bounded by [5]

1 M Ey
P, < §2erfc ( ij_N—o)

j=2

where R = k/n is the code rate, M = 2% is the number
of codewords, and w; is the weight of the jth codeword.
The bound on P, may be easily rewritten in terms of the
weight distribution A; as
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Similarly, for hard quantized, maximum-likelihood decod-
ing one can derive the union bound [5]

P, < f: [\/4p(1 - p)] wj
j=2

where p = %erfc (, / R%ﬁ- ’

The word error probability P, can be related to the
average bit error probability P, by observing that when at
least t+1 errors occur, the decoder produces an errroneous
codeword containing at least dni, = 2t + 1 errors over n
symbols. Therefore, kd,;;,/n is the average number of
erroneous bits. Since in a codeword there are k bits, one
has

These bounds and approximations were used in Fig. 2
to evaluate the performance of the (60,36) binary code
derived from the (15,9) RS code with b = 0.

At a high signal-to-noise ratio (SNR), the approxima-
tion erfe(z) = e==" [z./7 may be used. Considering only
the contribution of codewords at d,,in, for soft decoding,
one has the approximation

3
1 eV
Py, = -Ay4,,,.——
w 2 dmin

u/T

where u = \/Rd,;;,, Ey/No. The probability of bit error
P, may be approximated by Py = (dpmin/n) Py, as shown
in Fig. 2.

Experience with simulation results for smaller codes in-
dicates that this approximation is usually close to the true
performance, while the bounds become loose at P, larger
than 10-S.

IV. Conclusion

By computing the binary weight distribution of block
codes, it is possible to estimate their performance with
soft, maximum-likelihood decoding. This is useful in order
to find large binary block codes with good performance,
and to verify the performance obtained by specific soft-
decoding algorithms presently under development.
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Table 1. Binary welght distributions for the (7,2) and (7,5) codes.

weight
0

1

12
13

14

(21,6) CODE {21.15) CODE
b=0,b=1 b=2,b=6 b=3,b=4,b=5  b=0,b=4 b=1,b=2,b=3 b=5b=6

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 28 21 0
0 0 0 84 91 210
0 0 0 273 322 0

0 0 0 924 875 1638
3 0 0 1956 1809 0
0 21 14 2982 3129 6468
7 0 0 4340 4585 0
21 0 21 5796 5551 10878
21 0 0 5796 5551 0
7 42 21 4340 4585 9310
0 0 0 2982 3129 0
3 0 7 1956 1809 3570
0 0 0 924 875 0
0 0 0 273 322 651
0 0 0 84 91 0
0 0 0 28 21 42
0 0 0 0 0 0
0 0 0 0 0 0

1 0 0 1 1 0
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Table 2. Welght distributions of the (60,24) code,

weight

QO W o N N s W N

D=0, b=56 b=1,b=4 b=2,b=3 b=6,b=14 b=7,b=13 b=8,b=12 b=9,b=11 b=10
1 1 1 1 1 1 1 1
0 o 0 0 ) 0 0 o
0 0 0 0 0 0 0 0
0 0 ) 0 0 ) 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 12
0 0 0 0 0 0 0 0
0 0 15 30 30 0 15 0
15 75 80 0 0 0 0 0
150 300 180 450 375 420 390 465
76 859 679 0 0 0 0 0
2250 2160 2450 5190 4125 4530 4500 4425
6555 5520 5505 ) 0 0 0 0
14720 | 13220 | 13265 23420 28760 27485 27225 27240
29565 | 29760 | 29955 0 0 0 0 0
56304 | 60690 | 60795 | 135420 | 120665 | 121875 | 123000 | 120204
113255 | 115460 | 117455 0 0 0 0 0
518760 | 206520 | 205410 | 361140 | 408810 | 407565 | 407565 | 416895
342285 | 342180 | 339525 0 0 0 0 0
493400 | 531470 | 525185 | 1185680 | 1058015 | 1060295 | 1056500 | 1043975
758583 | 756000 | 753105 0 0 0 0 0
1079040 | 1000860 | 1018335 | 1778220 | 2016660 | 2016045 | 2020005 | 2034210
1277425 | 1275280 | 1281835 0 o0 0 0 0
1414125 | 1519215 | 1509690 | 3387720 | 3046005 | 3040095 | 3043830 | 3017910
1665945 | 1669170 | 1666155 0 0 0 0 0
1831108 | 1719736 | 1717876 | 3013272 | 3414132 | 3418617 | 3413237 | 3450383
1665945 | 1669170 | 1666155 0 0 0 0 0
1414125 | 1519215 | 1509600 | 3403485 | 3040170 | 3041160 | 3041205 | 3012720
1277425 | 1275280 | 1281835 0 0 o | o 0
1079040 | 1000860 | 1018335 | 1779060 | 2015760 | 2015895 | 2018235 | 2027940
758583 | 756000 | 753105 0 0 0 0 0
493400 | 531470 | 525185 | 1176580 | 1061395 | 1059385 | 1058160 | 1057440
342285 | 342180 | 339525 0 0 0 ) 0
218760 | 206520 | 205410 | 360300 | 409950 | 408615 | 409575 | 411105
113255 | 115460 | 117455 0 0 0 0 0
56304 | 60690 | 60795 | 138168 | 119493 | 122493 | 122148 | 119361
29565 | 20760 | 29955 0 0 0 0 0
14720 | 13220 | 13265 23780 28100 27035 26375 28070
6555 5520 5505 0 0 0 0 0
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Table 2 {contd).

weight b=0,b=5 b=1,b=4 b=2,b=3 b=6,b=14" b=7,b=13 b=8,b=12 b=9,b=11 b=10
44| 2250 2160 2430 4890 4305 4245 4755 4350
45| 676 859 679 0 0 0 ] 0
46 150 300 180 390 525 495 465 480
a7 15 75 90 0 0 0 ] 0
48 ] ] 15 20 20 65 30 30
49 o 0 0 0 0 0 0 0
50 o ] 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0
52 0 ] 0 0 0 ] 0 0
53 0 0 0 0 0 0 ] 0
54 0 0 0 0 0 0 0 0
85 0 0 0 ] 0 0 0 0
56 0 0 0 0 0 0 0 0
57 0 0 0 o 0 0 0 0
58 0 0 0 ] 0 ] 0 0
59 ] o 0 0 0 0 0 0
60 1 1 1 ] 0 ] 0 ]
Table 3. Weight distributions of the (60,36) code.
weight b=0, b=5 b=1, b=4 b=2,b=3 b=6,b=14  b=7,b=8,b=12  b=9, b=11 b=10 b=13
0 1 1 1 1 1 1 1 1
1 o 0 0 0 0 o 0 0
2 0 0 0 o] 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 [ 0 0 o] 0 0 0
6 0 0 0 o o 0 ] 0
7 0 0 0 60 0 0 15 4]
8 105 360 270 105 105 75 135 60
9 [+} 0 o} 660 765 945 1065 1005
10 9135 8067 9012 4350 4470 4500 4380 4605
11 0 0 0 20940 21045 20655 19995 20505
12 171290 170045 166730 84250 84370 84360 85950 84955
13 0 0 0 307620 308790 306720 310305 306690
14 2051130 2083850 2069655 1036980 1029780 1033080 1025820 1025810
15 0 0 [ 3169396 3166006 3172656 3163509 3171106
16 17857290 17841435 17827110 8879100 8926260 8909250 8920440 8933025
17 0 0 0 23084220 23077425 23080395 23067975 23087925
18| 110247955 110242255 110291800 55357350 55138110 55169540 565153100 55148985
18 0 0 0 121876260 121900185 121870485 121962285 121868505
20| 499868640 499744148 499677249 248880308 249779349 249773439 249831315 249692244
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Table 3 (contd).

weight b=0, b=5 b=1, b=4 b=2, b=3 b=6,b=14  b=7,b=8,b=12  b=9, b=11 b=10 b=13

21 0 0 0 475905260 475811560 475934000 | 475793915 | 475896440
22| 1686545400 | 1687429560 1687309875 | 846944880 843913200 843841440 | 843707280 | 844133640
23 0 0 0 1293888920 { 1393820040 | 1393856400 | 13393933350 | 1393917240
24| 4299960090 | 4297337520 | 4297910160 | 21 40496650 2148328210 | 2148448550 | 2148756230 | 2148052240
25 0 0 0 3094399368 | 3004425258 | 3094374858 | 3094295130 | 3094397658
26| 8326857870 | 8331803670 | 8330907000 | 4181824860 | 4166545740 | 4166496360 | 4165579800 | 4166607690
27 0 0 0 5245474360 | 5245577050 | 5245564790 | 5245776110 | 5245426450
28 | 12370476540 | 12363639450 | 12364329360 | 6158040345 | 6180719145 | 6180621765 | 6182602665 | 6181074915
29 [ 0 0 6821742120 | 6821661060 | 6821687280 | 6821545630 | 6821775660
30 | 14081448412 | 14098870268 | 14098595918 | 7076641208 | 7050800888 | 7050973648 | 7048404136 | 7050221828
31 0 0 0 6821742120 | 6821661060 | 6821687280 | 6821545530 | 6821775660
32 | 12370288365 | 12363796815 | 12364040385 | 6158040345 | 6180719145 | 6180621765 | 6182602665 | 6181074915
33 0 0 0 5245474360 | 5245577050 | 5245564790 | 5245776110 | 5245426450
34| 8327053230 | 8331595110 | 8331101280 | 4181824860 | 4166545740 | 4166496360 | 4165579800 | 4166607630
35 0 0 0 3094399368 | 3094425258 | 3094374858 | 3084295130 | 3094397658
36 | 4299922280 | 4297446770 | 4297957910 | 2140496050 | 2148328210 | 2148448550 | 2148756230 | 2148052240
37 0 0 0 1393888920 1383820040 | 1393856400 | 1393933350 | 1393917240
38| 1686443640 1687462200 1687212030 | 846944880 843913200 843841440 | 843707280 | 844133640
39 0 0 0 475905260 475911560 475934000 | 475793915 | 475896440
40| 499970973 499664856 499699626 248880309 249779349 249773439 | 249831315 | 249692244
41 0 0 0 121876260 121900185 121870485 121962285 121868505
42| 110224195 110285095 110300020 55357350 55138110 55169540 55153100 55148885
43 0 0 0 23084220 23077425 23080395 23067975 23087925
44 17833530 17831625 17829870 8879100 8926260 8909250 8920440 8933025
45 0 o} 0 3169396 3166006 3172656 3163509 3171106
46 2071290 2066730 2063835 1036980 1029780 1033080 1025820 1025910
47 0 0 0 307620 308790 306720 310305 306690
48 166120 167845 168400 84250 84370 84360 85950 84955

49 0 0 0 20940 21045 20655 19895 20505

50 8895 8715 9000 4350 4470 4500 4380 4605

51 0 0 0 660 765 945 1065 1005

52 380 345 225 105 105 75 135 60

53 0 [ 0 60 0 o} 15 0

54 0 0 15 0 0 0 0 0o

55 0 0 0 0 0 0 0 0

56 0 0 ] 0 0 0 0 0

57 0 0 0 0 0 0 0 [¢]

58 0 0o 0 0 o] 0 0 [o]

58 0 0 0 0 0 ] 0 o]

60 [¢] 0 0 1 1 1 1 1




(15.6) (15,9)
RS CODE or e RS CODE
MacWILLIAMS
(60,24) IDENTITY (60,36)
BINARY CODE GFE) BINARY CODE

Fig. 1. Method used to find the binary welght
distribution.

" —m— SOFT, MAXIMUM-LIKELIHOOD
_=0=— HARD, MAXIMUM-LIKELIHOOD ...

--o-- APPROXIMATION, SOFT,
MAXIMUM-LIKELIHOOD -

N N R

2 3 4 5 6
E,/No. 4B

Fig. 2. Performance of (60,36) binary code derlved from (15,9)

RS code.
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